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THERMAL SHOCK PROBLEM IN A HOMOGENEOUS ISOTROPIC HOLLOW CYLINDER 
WITH ENERGY DISSIPATION 

Mohamed I. A. Othman1  and  Ibrahim A. Abbas2 

In this work, we constructed the equations of generalized thermoelasticity of a homogeneous isotropic 
hollow cylinder.  The formulation is applied in the context of the Green and Naghdi theory of types II 
and III.  The material of the cylinder is assumed to be homogeneous isotropic both mechanically and 
thermally.  The problem has been solved numerically using a finite-element method.  Numerical results 
for the temperature distribution, displacement, radial stress, and hoop stress are represented graphically.  
Comparisons are made with the results predicted by the types II and III.  The results obtained in this pa-
per can be used to design various homogeneous thermoelastic elements under thermal load to meet spe-
cial engineering requirements.  
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1.  Introduction 

During the second half of the Twentieth Century, nonisothermal problems of the theory of elasticity became 
increasingly important.  This is due to their many applications in widely diverse fields.  First, the high velocities 
of modern aircraft give rise to aerodynamic heating, which produces intense thermal stresses that reduce the 
strength of the aircraft structure.  Second, in the nuclear field, the extremely high temperature and temperature 
gradients originating inside nuclear reactors influence their design and operations (Nowinski [1]).  

The classical theory of thermoelasticity as exposed, for example, in Carlson’s article [2] has found generali-
zations and modifications into various thermoelastic models that run under the label hyperbolic thermoelasticity; 
see the survey of Chandrasekharaiah [3] and Hitnarski and Ignazack [4].  The notation “hyperbolic” reflects the 
fact that thermal waves are modeled, avoiding the physical paradox of infinite propagation speed of the classical 
model.  In the 1990’s, Green and Naghdi [5–7] proposed three new thermoelastic theories based on an entropy 
equality rather than the usual entropy inequality.  The constitutive assumptions for the heat flux vector are dif-
ferent in each theory.  Thus, they obtained three theories that they called thermoelasticity of types I, II, and III.  
When the theory of type I is linearized we obtain the classical system of thermoelasticity.  The theory of type II 
(a limiting case of type III) does not admit energy dissipation.  In the context of the linearized version of this 
theory, theorems on uniqueness of solutions have been established by Hitnarski and Ignazack [4] and Green and 
Naghdi [7].  Boundary-initiated waves in a half-space and in an unbounded body with a cylindrical cavity have 
been studied by Green and Naghdi [5] and Chandrasekharaiah and Srinath [8], [9], and plane-wave thermal 
shock problems have been studied by Othman et al. [10] and Othman and Song [11–13]. 

The counterparts of our problem in the context of the uncoupled thermoelasticity theory, the coupled ther-
moelasticity theory, the Green–Lindsay theory (GL-theory) [14], and the Lord–Shulman theory (LS-theory) [15] 
have been considered by Othman [16], [17] and Othman and Song [18].  At appropriate stages of our analysis, 
we make a comparison of our results with those obtained in these works.  This comparison reveals that, on the 
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whole, the predictions of the  GN-theory (as obtained here) are qualitatively similar to those of the  LS-theory.  
More importantly, we notice that certain physically unrealistic features inherent in the conventional coupled 
thermo-elasticity theory and the  GL-theory are not present in the  GN-theory.  

The exact solution of the governing equations of the generalized thermoelasticity theory for a coupled and 
nonlinear/linear system exists only for very special and simple initial and boundary problems.  To calculate the 
solution of general problems, a numerical solution technique is used.  For this reason the finite-element method 
is chosen.  The method of weighted residuals offers the formulation of the finite-element equations and yields 
the best approximate solutions to linear and nonlinear ordinary and partial differential equations.  Applying this 
method basically involves three steps.  The first step is to assume that the general behavior of these approximat-
ing functions in the differential equations and boundary conditions results in some errors, called the residual.  
This residual has to vanish in an average sense over the solution domain.  The second step is the time integra-
tion.  The time derivatives of the unknown variables have to be determined by the former results.  The third step 
is to solve the equations resulting from the first and the second step by using a finite-element algorithm program 
(see Zienkiewicz and Taylor [19]).  Abbas [20], Youssef and Abbas [21], and Abbas and Abd-alla [22] applied 
the finite-element method in different problems.  

In the present paper, we consider the thermal shock problem of generalized thermoelasticity of a homoge-
neous isotropic hollow cylinder based on the Green–Naghdi theory of types II and III.  The problem has been 
solved numerically using a finite-element method (FEM).  Numerical results for the temperature distribution, 
displacement, radial stress, and hoop stress are represented graphically.   

2.  Formulation of the Problem 

In the context of generalized thermoelasticity theories, the system of equations that include the displace-
ment, the stress, the strain, and the temperature for a linear, homogenous, and isotropic thermoelastic continuum 
take the following form (Abbas and Abd-alla [22]): 

 
 
(� + μ)u j,ij +  μui, jj +  Fi  �  �T, i =  ���ui , (1) 

 
 
K *T, ii +  K �T, ii =  �CE

��T +  gT0��ui, i , (2) 

 �ij =  �ui, i�ij +  μ ui, j + u j, i( ) �  �T�ij , (3) 

where  � ,  μ   are the Lamé constants,  � = (3� + 2μ)�t ,  �t   is the coefficient of linear thermal expansion, 

CE   is the specific heat at constant strain,  T   is the temperature above the reference temperature  T0 ,  and  K   

and  K*   are respectively the thermal conductivity and material constant characteristic of the theory.  When  
K � 0 ,  Eq. (2) reduces to the heat conduction equation of the  GN  II theory.    

In a cylindrical coordinate system  (r, �, z)   for the axially symmetric problem,  ur = ur (r, z, t) ,  u� = 0 ,  

uz = uz (r, z, t) .  Furthermore, if only the axisymmetric plane strain problem is considered, we have  ur = u(r, t)   

and  u� = uz = 0   The strain-displacement relations are 

 err =
�u

�r
, e�� =

u

r
, ezz = erz = er� = e�z = 0 . (4) 
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The stress-strain relations are  
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If it is assumed that there are no body forces and heat sources in the medium, the equations of motion and 
energy equation have the form 
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It is convenient to cast the preceding equations into their dimensionless forms.  To do this, the dimension-
less parameters are introduced as 

 
 
(r�, u� ) =

(r, u)

c1�1
, t� =

t
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, �rr
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where,  c1
2 =

� + 2μ



,  �1 =
K

�CEc1
2 . 

Inserting (10) into Eqs. (5)–(9) one obtains (after dropping the superscript   
�   for convenience) 

 �rr = ( 2 + a1)
�u

�r
+ a1

u

r
� (2 + a1)� , (11) 

 ��� = a1
�u

�r
+ (2 + a1)

u

r
� (2 + a1)� , (12) 

 �zz = a1
�u

�r
+

u

r

�
��

�
�	
� (2 + a1)� , (13) 

 
�2u

�r2 +
1

r

�u

�r
�

u

r2 �
��
�r

=
�2u

�t 2
, (14) 



THERMAL SHOCK PROBLEM IN A HOMOGENEOUS ISOTROPIC HOLLOW CYLINDER WITH ENERGY DISSIPATION 269 

 �2 + �3
�
�t

�
��

�
�	

�2

�r2 +

1

r

�

�r

�

��
�

�	
�
�2

�t 2 = �1

�2

�t 2

�u

�r
+

u

r

�
��

�
�	

, (15) 

 a1 =
�
μ

, �1 =
� 2T0

�2c1
2CE

, �2 =
K *

�c1
2CE

, �3 =
K

�c1
2CE�1

. 

 From the preceding description, the initial and boundary conditions may be expressed as 

 u(r, 0) =
�u(r, 0)

�t
= 0, �(r, 0) =

��(r, 0)

�t
= 0 , (16) 

 �rr (a, t) = 0, �rr (b, t) = 0, �(a, t) = H (t),
��(b, t)

�r
= 0 , (17) 

where  a   and  b   are the inner and outer radii of the hollow cylinder and  H   is the Heaviside unit step func-
tion.  

3.  Finite-Element Method 

In order to investigate the numerical solution of the thermal shock problem of generalized thermoelasticity 
of a homogeneous isotropic hollow cylinder, we use the finite-element method (FEM) (Reddy [23] and Cook et 
al. [24]) due to its flexibility in modeling layered structures and its ability to yield the full-field numerical solu-
tion.  The governing equations (14) and (15) are coupled with initial and boundary conditions (16) and (17).  The 
numerical values of the dependent variables such as the displacement u   and the temperature  �   are obtained at 
interesting points called the degrees of freedom.  The weak formulations of the nondimensional governing equa-
tions are derived.  The set of independent test functions consisting of the displacement  �u   and the temperature  
��   is prescribed.  The governing equations are multiplied by independent weighting functions and are then in-
tegrated over the spatial domain with the boundary.  Integrating by parts and making use of the divergence theo-
rem, we reduce the order of the spatial derivatives, which allows for the application of the boundary conditions.  
The same shape functions are defined piecewise on the elements.  Using the Galerkin procedure, we approxi-
mate the unknown fields  u   and  �   and the corresponding weighting functions by the same shape functions.  
The last step towards the finite-element discretization is to choose the element type and the associated shape 
functions.  Three nodes of quadrilateral elements are used.  The shape function is usually denoted by the letter  
N   and is usually the coefficient that appears in the interpolation polynomial.  A shape function is written for 
each individual node of a finite element and has the property that its magnitude is 1  at that node and 0  for all 
other nodes in that element.  We assume that the master element has its local coordinates in the range [�1,1] .  In 

our case, the one-dimensional quadratic elements are used, which are given by: 
Linear shape functions 

 N1 =
1

2
1� �( ) , N2 =

1

2
1+ �( ) . (18) 

Quadratic shape functions 

 N1 =
1

2
�2 � �( ) , N2 = 1� � 2 , N3 =

1

2
�2 + �( ) . (19) 

On the other hand, the time derivatives of the unknown variables have to be determined by the Newmark 
time integration method (Cook et al. [24]).  
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Fig. 1.  The temperature distribution in different values of time. 

 

Fig. 2.  The displacement distribution in different values of time. 
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Fig. 3.  The radial stress distribution in different values of time. 

 

Fig. 4.  The hoop stress distribution in different values of time. 



272 MOHAMED I. A. OTHMAN  AND  IBRAHIM A. ABBAS 

 

Fig. 5.  The temperature distribution in different values of  �2 . 

 

Fig. 6.  The displacement distribution in different values of  �2 . 
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Fig. 7.  The radial stress distribution in different values of  �2 . 

 

Fig. 8.  The hoop stress distribution in different values of  �2 . 
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Fig. 9.  The temperature distribution in different values of  �3 . 

 

Fig. 10.  The displacement distribution in different values of  �3 . 
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Fig. 11.  The radial stress distribution in different values of  �3 . 

 

Fig. 12.  The hoop stress distribution in different values of  �3 . 
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4.  Numerical Results 

With an aim to illustrate the problem, we will present some numerical results.  The copper material was 
chosen for purposes of numerical computation, the physical data for which are given as 

  � = 7.76 × 1010 (kg)(m)�1(sec)�2, μ = 3.86 × 1010 (kg)(m)�1(sec)�2, T0 = 293 K( ) , �1 = 0.0168 , 

  � = 8.954 × 103(kg)(m)�3, CE = 3.831× 102 (m)2 (K)�1(sec)�2, �t = 17.8 × 10�6 (K)�1 . 

The field quantities, temperature, displacement, and stresses depend not only on time  t   and space  r ,  but also 
on the characteristic parameter of the Green–Naghdi theory of types II and III.  Here all the variables are taken 
in nondimensional form.  The results for the temperature, displacement, radial stress, and hoop stress have been 
obtained by taking  t = 0.2   based on the Green–Naghdi theory of types II and III.  Figures 1–4 exhibit the 
variation of the temperature, displacement, radial stress, and hoop stress with respect to  r   for the two types II, 
III of the Green–Naghdi theory and two different values of times t = 0.1 and t = 0.2 .  Figures 5–8 depict the 

variation of the temperature, displacement, radial stress, and hoop stress under the Green–Naghdi theory of type 
II (without energy dissipation) for four different values of the characteristic parameter  �2 = 0.2, 0.3, 0.4, 0.5   

and  �3 = 0 .  It is seen from Fig. 5 that the characteristic parameter  �2   has an increasing effect on the tem-

perature for  0 < r < 1.15 .  Figure 6 shows that the characteristic parameter  �2   has a decreasing effect on the 

displacement component  u   for 0 < r < 1.05  and an increasing effect for 1.05 < r < 1.2 .  Figure 7 shows that 
the characteristic parameter �2  has an increasing effect on radial stress �rr  for 0 < r < 1.05  and a decreasing 

effect for 1.05 < r < 1.25.   Figure 8 shows that the characteristic parameter �2  has a decreasing effect on hoop 

stress ���  for 0 < r < 1.25 .  Figures 9–12 show the variation of displacement, radial stress, and hoop stress un-

der the Green–Naghdi theory of type III (with energy dissipation) for four different values of the characteristic 
parameter  �3 = 0.3, 0.5, 0.7, 0.9   and  �2 = 0.2 .  Figure 9 shows that the characteristic parameter  �3   has an 

increasing effect on the temperature for 0 < r < 2 .  Figure 10 shows that the characteristic parameter �3  has a 

decreasing effect on the displacement component u  for 0 < r < 1.2  and an increasing effect for 1.2 < r < 2 . 
Figures 11 and 12 show that the characteristic parameter  �3   has a decreasing effect on the radial stress  �rr   

and hoop stress  ��� .  

5.  Conclusion 

In this paper we have investigated the solution of the thermal shock problem of generalized thermoelasticity 
of a homogeneous isotropic hollow cylinder based on the Green–Naghdi theory of types II and III) by using the 
finite-element method.  The differences of the field quantities predicted by the  GN  theory of types II and III are 
remarkable.  We conclude that the characteristic parameters  �2   and  �3   have a great effect on the field quanti-

ties.  The results obtained in this paper can be used to design various homogeneous thermoelastic elements under 
thermal load to meet special engineering requirements.  
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